首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79480篇
  免费   1400篇
  国内免费   607篇
测绘学   2263篇
大气科学   5779篇
地球物理   16384篇
地质学   27389篇
海洋学   6763篇
天文学   18622篇
综合类   212篇
自然地理   4075篇
  2021年   688篇
  2020年   789篇
  2019年   838篇
  2018年   1960篇
  2017年   1813篇
  2016年   2287篇
  2015年   1285篇
  2014年   2182篇
  2013年   3977篇
  2012年   2294篇
  2011年   3111篇
  2010年   2814篇
  2009年   3865篇
  2008年   3297篇
  2007年   3303篇
  2006年   3051篇
  2005年   2291篇
  2004年   2332篇
  2003年   2145篇
  2002年   2148篇
  2001年   1931篇
  2000年   1814篇
  1999年   1566篇
  1998年   1607篇
  1997年   1512篇
  1996年   1164篇
  1995年   1237篇
  1994年   1158篇
  1993年   992篇
  1992年   900篇
  1991年   930篇
  1990年   958篇
  1989年   882篇
  1988年   816篇
  1987年   967篇
  1986年   855篇
  1985年   1059篇
  1984年   1248篇
  1983年   1134篇
  1982年   1054篇
  1981年   1024篇
  1980年   885篇
  1979年   851篇
  1978年   878篇
  1977年   777篇
  1976年   720篇
  1975年   726篇
  1974年   690篇
  1973年   758篇
  1972年   485篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
81.
We present results from a new simulation code that accounts for the evolution of the reservoirs of carbon dioxide on Mars, from its early years to the present. We establish a baseline model parameter set that produces results compatible with the present (i.e., Patm?6.5 mbar with permanent CO2 ice cap) for a wide range of initial inventories. We find that the initial inventory of CO2 broadly determines the evolutionary course of the reservoirs of CO2. The reservoirs include the atmosphere, ice cap, adsorbed CO2 in the regolith, and carbonate rocks. We track the evolution of the free inventory: the atmosphere, ice cap and regolith. Simulations begin at 4.53 Gyr before present with a rapid loss of free inventory to space in the early Noachian. Models that assume a relatively small initial inventory (?5 bar) have pronounced minima in the free inventory of CO2 toward the end of the Noachian. Under baseline parameters, initial inventories below ∼4.5 bar result in a catastrophic loss of the free inventory to space. The current free inventory would be then determined by the balance between outgassing, sputtering losses and chemical weathering following the end of the late bombardment. We call these “thin” models. They generically predict small current free inventories in line with expectations of a small present CO2 ice cap. For “thick” models, with initial inventories ?5 bar, a surplus of 300-700 mbar of free CO2 remains during the late-Noachian. The histories of free inventory in time for thick models tend to converge within the last 3.5 Gyr toward a present with an ice cap plus atmospheric inventory of about 100 mbar. For thick models, the convergence is largely due to the effects of chemical weathering, which draws down higher free inventories more rapidly than the low. Thus, thick models have ?450 mbar carbonate reservoirs, while thin models have ?200 mbar. Though both thick and thin scenarios can reproduce the current atmospheric pressure, the thick models imply a relatively large current CO2 ice cap and thin models, little or none. While the sublimation of a massive cap at a high obliquity would create a climate swing of greenhouse warming for thick models, under the thin model, mean temperatures and pressures would be essentially unaffected by increases in obliquity.  相似文献   
82.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   
83.
I briefly present the Organizing Committee's and my own motivation for organizing this workshop, and I suggest a few key questions for which we will try to find possible answers in the coming days. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
84.
85.
86.
87.
In the first paper of this series, we presented EBAS – Eclipsing Binary Automated Solver, a new fully automated algorithm to analyse the light curves of eclipsing binaries, based on the ebop code. Here, we apply the new algorithm to the whole sample of 2580 binaries found in the Optical Gravitational Lensing Experiment (OGLE) Large Magellanic Cloud (LMC) photometric survey and derive the orbital elements for 1931 systems. To obtain the statistical properties of the short-period binaries of the LMC, we construct a well-defined subsample of 938 eclipsing binaries with main-sequence B-type primaries. Correcting for observational selection effects, we derive the distributions of the fractional radii of the two components and their sum, the brightness ratios and the periods of the short-period binaries. Somewhat surprisingly, the results are consistent with a flat distribution in log P between 2 and 10 d. We also estimate the total number of binaries in the LMC with the same characteristics, and not only the eclipsing binaries, to be about 5000. This figure leads us to suggest that  (0.7 ± 0.4)  per cent of the main-sequence B-type stars in the LMC are found in binaries with periods shorter than 10 d. This frequency is substantially smaller than the fraction of binaries found by small Galactic radial-velocity surveys of B stars. On the other hand, the binary frequency found by Hubble Space Telescope ( HST ) photometric searches within the late main-sequence stars of 47 Tuc is only slightly higher and still consistent with the frequency we deduced for the B stars in the LMC.  相似文献   
88.
High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.  相似文献   
89.
We develop a new method to estimate the redshift of galaxy clusters through resolved images of the Sunyaev–Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. We test the method with a set of high-resolution hydrodynamical simulations of galaxy clusters at different redshifts. Our method combines the observables in a principal component analysis. After calibrating the method with an independent redshift estimation for some of the clusters, we show – using a Bayesian approach – how the method can give an estimate of the redshift of the galaxy clusters. Although the error bars given by the morphological redshift estimation are large, it should be useful for future SZE surveys where thousands of clusters are expected to be detected; a first preselection of the high-redshift candidates could be done using our proposed morphological redshift estimator. Although not considered in this work, our method should also be useful to give an estimate of the redshift of clusters in X-ray and optical surveys.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号